Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 113(3): 614-623, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196536

RESUMO

PURPOSE: To investigate brain tissue response to ultra-high dose rate (uHDR, FLASH) and standard dose rate (SDR) proton irradiations in the Bragg peak region. METHODS AND MATERIALS: Active scanning uHDR delivery was established for proton beams for investigation of dose rate effects between clinical SDR and uHDR at ∼10 Gy in the Bragg peak region (dose-averaged linear energy transfer [LETD] ranging from 4.5 to 10.2 keV µm-1 ). Radiation- induced injury of neuronal tissue was assessed by studying the DNA double strand break repair kinetics surrogated by nuclear γH2AX staining (radiation induced foci [RIF]), microvascular density and structural integrity (MVD, CD31+ endothelium), and inflammatory microenvironmental response (CD68+ microglia/macrophages and high mobility group box protein 1[HMGB]) in healthy C57BL/6 mouse brains. RESULTS: Averaged dose rates achieved were 0.17 Gy/s (SDR) and 120 Gy/s (uHDR). The fraction of RIF-positive cells increased after SDR ∼10-fold, whereas a significantly lower fraction of RIF-positive cells was found after uHDR versus SDR (∼2 fold, P < .0001). Moreover, uHDR substantially preserved the microvascular architecture and reduced microglia/macrophage regulated associated inflammation as compared with SDR. CONCLUSIONS: The feasibility of uHDR raster scanning proton irradiation is demonstrated to elicit FLASH sparing neuroprotective effects compared to SDR in a preclinical in vivo model.


Assuntos
Fármacos Neuroprotetores , Terapia com Prótons , Lesões por Radiação , Animais , Transferência Linear de Energia , Camundongos , Camundongos Endogâmicos C57BL , Terapia com Prótons/métodos , Prótons
2.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947991

RESUMO

DNA-double strand break (DSB), detected by immunostaining of key proteins orchestrating repair, like γH2AX and 53BP1, is well established as a surrogate for tissue radiosensitivity. We hypothesized that the generation of normal brain 3D organoids ("mini-brains") from human induced pluripotent stem cells (hiPSC) combined with detection of DNA damage repair (DDR) may hold the promise towards developing personalized models for the determination of normal tissue radiosensitivity. In this study, cerebral organoids, an in vitro model that stands in its complexity between 2D cellular system and an organ, have been used. To quantify radiation-induced response, immunofluorescent staining with γH2AX and 53BP1 were applied at early (30 min, initial damage), and late time points (18 and 72 h, residual damage), following clinical standard 2 Gy irradiation. Based on our findings, assessment of DDR kinetics as a surrogate for radiosensitivity in hiPSC derived cerebral organoids is feasible. Further development of mini-brains recapitulating mature adult neuronal tissue and implementation of additional signaling and toxicity surrogates may pave the way towards development of next-generation personalized assessment of radiosensitivity in healthy neuronal tissue.


Assuntos
Encéfalo/citologia , Dano ao DNA , Organoides/citologia , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Células Cultivadas , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Técnicas de Cultura de Órgãos , Organoides/metabolismo , Organoides/efeitos da radiação , Doses de Radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
3.
J Neurochem ; 153(6): 693-709, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32031240

RESUMO

Autoimmune optic neuritis (AON), a model of multiple sclerosis-associated optic neuritis, is accompanied by degeneration of retinal ganglion cells (RGCs) and optic nerve demyelination and axonal loss. In order to investigate the role of N-methyl-d-aspartate (NMDA) receptors in mediating RGC degeneration, upstream changes in the optic nerve actin cytoskeleton and associated deterioration in visual function, we induced AON in Brown Norway rats by immunization with myelin oligodendrocyte glycoprotein. Subsequently, visual acuity was assessed by recording visual evoked potentials and electroretinograms prior to extraction of optic nerves for western blot analysis and retinas for quantification of RGCs. As previously reported, in Brown Norway rats RGC degeneration is observed prior to onset of immune cell infiltration and demyelination of the optic nerves. However, within the optic nerve, destabilization of the actin cytoskeleton could be seen as indicated by an increase in the globular to filamentous actin ratio. Interestingly, these changes could be mimicked by intravitreal injection of glutamate, and similarly blocked by application of the NMDA receptor blocker MK-801, leading us to propose that prior to optic nerve lesion formation, NMDA receptor activation within the retina leads to retinal calcium accumulation, actin destabilization within the optic nerve as well as a deterioration of visual acuity during AON.


Assuntos
Neurite Óptica/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Retina/metabolismo , Animais , Maleato de Dizocilpina/farmacologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Potenciais Evocados Visuais/efeitos dos fármacos , Potenciais Evocados Visuais/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Glicoproteína Mielina-Oligodendrócito/toxicidade , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Neurite Óptica/induzido quimicamente , Neurite Óptica/imunologia , Ratos , Ratos Endogâmicos BN , Receptores de N-Metil-D-Aspartato/imunologia , Retina/efeitos dos fármacos , Retina/imunologia
4.
Glia ; 67(3): 512-524, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578556

RESUMO

Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Although it is the presenting symptom in many cases, the initial events are currently unknown. However, in the earliest stages of autoimmune optic neuritis in rats, pathological changes are already apparent such as microglial activation and disturbances in myelin ultrastructure of the optic nerves. αB-crystallin is a heat-shock protein induced in cells undergoing cellular stress and has been reported to be up-regulated in both multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Therefore, we wished to investigate the timing and localization of its expression in autoimmune optic neuritis. Although loss of oligodendrocytes was not observed until the later disease stages accompanying immune cell infiltration and demyelination, an increase in oligodendrocyte αB-crystallin was observed during the preclinical stages. This was most pronounced within the optic nerve head and was associated with areas of IgG deposition. Since treatment of isolated oligodendrocytes with sera from myelin oligodendrocyte glycoprotein (MOG)-immunized animals induced an increase in αB-crystallin expression, as did passive transfer of sera from MOG-immunized animals to unimmunized recipients, we propose that the partially permeable blood-brain barrier of the optic nerve head may present an opportunity for blood-borne components such as anti-MOG antibodies to come into contact with oligodendrocytes as one of the earliest events in disease development.


Assuntos
Doenças Autoimunes/patologia , Encefalomielite Autoimune Experimental/patologia , Nervo Óptico/patologia , Neurite Óptica/patologia , Animais , Doenças Autoimunes/imunologia , Progressão da Doença , Encefalomielite Autoimune Experimental/imunologia , Feminino , Oligodendroglia/imunologia , Oligodendroglia/patologia , Nervo Óptico/imunologia , Neurite Óptica/imunologia , Ratos , Ratos Sprague-Dawley
5.
J Neuropathol Exp Neurol ; 77(5): 361-373, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444299

RESUMO

Disturbances in the nodes of Ranvier are an early phenomenon in many CNS disorders, including the autoimmune demyelinating disease multiple sclerosis (MS). Using an animal model of optic neuritis, a common early symptom of MS, we have investigated nodal and paranodal compartments in the optic nerve during disease progression. Both nodes and paranodes, as identified by immunohistochemistry against sodium channels (Nav) and Caspr, respectively, were observed to increase in length during the late induction phase of the disease, prior to onset of the demyelination and immune cell infiltration characteristic of optic neuritis. These changes were correlated with both axonal stress and microglial/macrophage activation, and were most apparent in the vicinity of the retrobulbar optic nerve head, the unmyelinated region of the optic nerve where retinal ganglion cell axons exit the retina. Using intravitreal glutamate injection as a model of a primary retinal insult, we demonstrate that this can induce similar nodal and paranodal changes. This may suggest that onset of neurodegeneration in the absence of demyelination, as reported in several studies into the nonaffected eyes of MS patients, may give rise to subtle disturbances in the axo-glial junction.


Assuntos
Doenças Autoimunes/patologia , Neurite Óptica/patologia , Animais , Axônios/patologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Imuno-Histoquímica , Microglia/patologia , Degeneração Neural/patologia , Nervo Óptico/patologia , Ratos , Células Ganglionares da Retina/patologia , Canais de Sódio/metabolismo
6.
J Neuropathol Exp Neurol ; 72(8): 745-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23860028

RESUMO

Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Recently, the neurodegenerative component of multiple sclerosis has come under focus particularly because permanent disability in patients correlates well with neurodegeneration; and observations in both humans and multiple sclerosis animal models highlight neurodegeneration of retinal ganglion cells as an early event. After myelin oligodendrocyte glycoprotein immunization of Brown Norway rats, significant retinal ganglion cell loss precedes the onset of pathologically defined autoimmune optic neuritis. To study the role calcium and calpain activation may play in mediating early degeneration, manganese-enhanced magnetic resonance imaging was used to monitor preclinical calcium elevations in the retina and optic nerve of myelin oligodendrocyte glycoprotein-immunized Brown Norway rats. Calcium elevation correlated with an increase in calpain activation during the induction phase of optic neuritis, as revealed by increased calpain-specific cleavage of spectrin. The relevance of early calpain activation to neurodegeneration during disease induction was addressed by performing treatment studies with the calpain inhibitor calpeptin. Treatment not only reduced calpain activity but also protected retinal ganglion cells from preclinical degeneration. These data indicate that elevation of retinal calcium levels and calpain activation are early events in autoimmune optic neuritis, providing a potential therapeutic target for neuroprotection.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Degeneração Neural/etiologia , Neurite Óptica/complicações , Neurite Óptica/patologia , Retina/patologia , Células Ganglionares da Retina/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cloretos/farmacologia , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Ectodisplasinas/metabolismo , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/imunologia , Feminino , Imageamento por Ressonância Magnética , Compostos de Manganês/farmacologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Degeneração Neural/prevenção & controle , Neuroprostanos/farmacologia , Neuroprostanos/uso terapêutico , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Neurite Óptica/tratamento farmacológico , Neurite Óptica/etiologia , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...